Tribocorrosion Behavior of Nanocrystalline Metals — a Review
نویسندگان
چکیده
منابع مشابه
Toward a quantitative understanding of mechanical behavior of nanocrystalline metals
Focusing on nanocrystalline (nc) pure face-centered cubic metals, where systematic experimental data are available, this paper presents a brief overview of the recent progress made in improving mechanical properties of nc materials, and in quantitatively and mechanistically understanding the underlying mechanisms. The mechanical properties reviewed include strength, ductility, strain rate and t...
متن کاملThin Film Bulge Test of Nanocrystalline Metals
Free-standing nanocrystalline copper (Cu) films with grain size around 39 nm are fabricated by thermal evaporation and characterized by the plane-strain bulge test. Young’s modulus and yield stress at a 0.2% offset are about 110 ~ 130 GPa and 400 MPa, respectively. Results show that no grain growth is observed and the predominant plastic deformation mechanism is grain boundary sliding accompani...
متن کاملAtomistic mechanisms of fatigue in nanocrystalline metals.
We investigate the mechanisms of fatigue behavior in nanocrystalline metals at the atomic scale using empirical force laws and molecular level simulations. A combination of molecular statics and molecular dynamics was used to deal with the time scale limitations of molecular dynamics. We show that the main atomistic mechanism of fatigue crack propagation in these materials is the formation of n...
متن کاملNanocrystalline metals are by definition polycrystalline structures
with a mean grain size below 100 nm. Fig. 1 shows an image taken in a transmission electron microscope of a high-density nanocrystalline (nc)-Cu sample with a mean grain size of 20 nm. The mechanical behavior of a fully-dense nanocrystalline metal is, compared with its coarse-grain counterpart, characterized by a significantly enhanced yield stress and a limited tensile elongation1,2. A simple ...
متن کاملDislocation–twin interactions in nanocrystalline fcc metals
Dislocation interaction with and accumulation at twin boundaries have been reported to significantly improve the strength and ductility of nanostructured face-centered cubic (fcc) metals and alloys. Here we systematically describe plausible dislocation interactions at twin boundaries. Depending on the characteristics of the dislocations and the driving stress, possible dislocation reactions at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATERIALS TRANSACTIONS
سال: 2015
ISSN: 1345-9678,1347-5320
DOI: 10.2320/matertrans.m2015280